Symmetries of faces models and the double triangle algebra
نویسنده
چکیده
Symmetries of trigonometric integrable two dimensional statistical face models are considered. The corresponding symmetry operators on the Hilbert space of states of the quantum version of these models define a weak *-Hopf algebra isomorphic to the Ocneanu double triangle algebra(DTA). R. TRINCHERO 1
منابع مشابه
Quantum symmetries of face models and the double triangle algebra
Symmetries of trigonometric integrable two dimensional statistical face models are considered. The corresponding symmetry operators on the Hilbert space of states of the quantum version of these models define a weak *-Hopf algebra isomorphic to the Ocneanu double triangle algebra. R. TRINCHERO 1
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملThe role of states in triangle algebras
In this paper, we enlarge the language of triangle algebra by addinga unary operation that describes properties of a state. Thesestructure algebras are called state triangle algebra. The vitalproperties of these algebras are given. The notion of state interval-valued residuated lattice (IVRL)-filters are introduced and givesome examples and properties of them are given. ...
متن کاملAN INVESTIGATION ON THE CO-ANNIHILATORS IN TRIANGLE ALGEBRAS
In this paper, we introduce the notion of co-annihilator of a subsetin a triangle algebra. It is shown that the co-annihilator of asubset is an interval valued residuated lattice (IVRL)-filter. Also, aspecial set of a triangle algebra is defined and the relationshipbetween this set and co-annihilator of a subset in triangle algebrais considered. Finally, co-annihilators preserving congruencerel...
متن کامل